Doctor Dobbs Journal - CSPICE article.
i

CSPICE - A C Version of JPL’s SPICELIB Toolkit

By

Ed Wright
Jet Propulsion Laboratory, California Institute of
Technology, Pasadena, California

|
What is SPICE? i

The Navigation Ancillary Information Facility (NAIF), under the
direction of NASA’s Office of Space Science, built the SPICE data system
to assist scientists with planning and interpretation of scientific
observations from space borne-instruments. The system provides the
ancillary information needed to recover the full value of science
instrument data, and facilitate the correlation of individual instrument
data sets with data from other instruments on the same or other
spacecraft.

NAIF serves as the Ancillary Data Node of NASA’'s Planetary Data
System, responsible for the distribution of the SPICE data sets, called
kernel files, produced by NASA‘’s planetary flight projects. The SPICE
data kernels exist for:

S- Spacecraft trajectory, given as a function of time
(SPK Kernels).

P- Planet, satellite, comet, asteroid, associated physical
and cartographic constants (PCK Kernels).

I- Instrument information, including internal timing and
other geometric information (I Kernels).

C- C matrix, time tagged orientation data of mounted
structures and instruments (C Kernels).

E- Events for the spacecraft and ground data system, both
planned and unplanned (E Kernels).

Hence the SPICE acronym. NAIF also assembles and distributes PCK
kernels based on products provided by JPL’s Solar System Dynamics Group.
The SPICE library (SPICELIB) consists of 952 portable FORTRAN
routines with 79,369 lines of executable code and 153,649 comment lines.

The library contains reader subroutines to retrieve data (position,
velocity, and instrument observation geometry parameters) from each of
the SPICE kernels, plus a wide assegtment of geometry, math, time

Why Develop a C version of SPICE?

Many NAIF customers ask for a C version of the SPICELIB library.
Not every site can access a FORTRAN compiler or programmer, but most
possess a C compiler. C improves ease of use, and C libraries escape
cross language I/0 problems and non-portable interface issues. C
integrates easily with Java, C++, and software environments such as IDL
(Interactive Data Language).

What is CSPICE?

CSPICE extends the SPICE system to the C language realm. The
functionality of CSPICE approximates that of SPICELIB, with minor
differences due to the disparate properties of ANSI C versus FORTRAN.
The CSPICE toolkit consists of an ANSI C version of the SPICELIB
library, a support library, SPICE utility programs, documentation, and
example cookbook programs. The toolkit’s main component, the CSPICE
library, includes the source for all C routines generated by f2c¢ from
SPICELIB routines, both f2c¢ support libraries (1ibF77, 1ibI77), a set of
hand coded wrapper routines which encapsulate certain translated
routines, and all required header files. Functional library ports exist
for: HP, Solaris, MacPPC, SGI (032 and n32), Win95/NT, Linux, and DEC
Alpha Digital Unix.

Other C libraries exist which provide geometric/vector/matrix math
functions (though not all are as numerically stable), but only CSPICE
provides the ability to read and write SPICE kernel files. CSPICE also
includes extensive time conversion routines and a sophisticated,
user-configurable error trace/signal system which emulates exception
handling.

SPICELIB to CSPICE

CSPICE'S existence requires the automatic conversion of FORTRAN
code to C via the f2c¢c utility. The utility creates C code which
emulates the behavior of input FORTRAN code. The conversion of 79,000
plus lines of FORTRAN code to C is impractical without f2c¢, so lacking
f2c, development of CSPICE would require a routine-by-routine rewrite of
SPICELIB and take a horrendous amount of time.

NAIF uses a naming convention to distinguish between the wvarious
forms of a routine. Given a FORTRAN routine sub in file sub.f(or), f2c
creates a C routine sub_ in file sub.c. The wrapper’s name is sub_c in
file sub_c.c and sub_c may call sub_. The code base of the CSPICE
library is the set of all f2c¢ translated routines.

The f2c¢ application has several command line options. The CSPICE
library builds with the options:

-u -C -a -A -P -lbs

-u Make the default type of a variable *"undefined.*

-C Compile code to check subscripts are within
declared array bounds.
-a Make local variables automatic instead of static

unless they appear in DATA, EQUIVALENCE, NAMESLIST
or SAVE statements.

-A Produce ANSI C.

-P Write a prototype file of ANSI or C++ for
definitions in each input FORTRAN file.

~-!bs Do not recognize backslash escapes in character
strings.

The Macintosh version of CSPICE does not use the -a argument due to a
32k size limit for local variables imposed by the MetroWerks CodeWarrior
compiler.

The f2c distribution consists of the source for the
application, as well as the source for the 1ibI77 and 1ibF77 libraries
which simulate FORTRAN functionality in C. You may download the
distribution from:

http://netlib.bell-lab.com/netlib/f2c/

Wrappers

The wrappers provide a C-friendlier interface to the more commonly
used routines or to routines hand recoded in C and not dependent on an
f2c translation (such as math functions). Compare the program interface
between a FORTRAN routine, its f2c¢ counterpart, and the corresponding
wrapper. The FORTRAN version of SPKEZ has as an argument list:

SUBROUTINE SPKEZ (TARG, ET, REF, ABCORR, OBS, STARG, LT)

INTEGER TARG

DOUBLE PRECISION ET

CHARACTER™* (*) REF
CHARACTER™* (*) ABCORR
INTEGER OBS

DOUBLE PRECISION STARG (6)
DOUBLE PRECISION LT

where TARG, ET, REF, ABCORR and OBS are inputs, with STARG and LT the
outputs. £f2c creates an interface with the form:

int spkez_(integer *targ .
doublereal *et '
char *ref .

char *abcorr ,

http://netlib.bell-lab.com/netlib/f2c

integer *obs '
doublereal *starg '
doublereal *1lt '
ftnlen ref_len ,
ftnlen abcorr_len)

Now the wrapper routine, which calls spkez__:

void spkez_c (SpicelInt targ,
SpiceDouble et,
ConstSpiceChar * ref,
ConstSpiceChar * abcorr,
Spicelnt obs,
SpiceDouble stargl(6],
SpiceDouble * 1t)

spkez_c passes C strings, single values (for input), and pointers
(strings and outputs); spkez_ passes only FORTRAN strings, pointers
(input and output), and the string length values. For those not
experienced with C and FORTRAN, the differences between string formats
may be unclear. Internally, f£2c uses FORTRAN style stings: blank
padded without null terminators.

Wrappers also replace system dependent calls. SPICELIB contains
several routines with such calls; the most common return FORTRAN
equivalents of argv, argc, and system time. f2c understandably fails to
translate these routines to usable C, so those are manually recoded.

A number of non-portable SPICELIB routines provide some
functionality available in the standard C library. The appropriate C
calls replace the CSPICE versions of the routines either via a macro or
wrapper.

The CSPICE design assumes calls to the library from pure C
programs, not an f2c version of some program. A programmer should
access CSPICE through a wrapper, assuming a wrapper for the needed
routine exists. Otherwise direct calls to the f2c¢’d code base are
needed. A wrapper may call other wrappers, but the f2c¢c’d code base
calls only other f2c’d code (subl_ calls sub2_, not sub2_c).

Problems and Solutions

The process of creating a C version of a large FORTRAN library
lends itself to numerous problems from code format and style issues to
the use of internal data types. The requirement of full ANSI
compatibility for the wrappers ensures few or no portability problems.
Wrapper development uses the GNU C compiler (gcc) with the arguments
~ansi (support ANSI standard), -Wall (warn of all errors), and -pedantic
(reject non-ansi extensions).

The NAIF Team defined a coding standard for C routines which
includes complete, informative, ap@ human understandable internal

documentation. NAIF SPICELIB routines contain extensive headers which
list revisions, authors, platform specific modifications, as well as a
detailed description of the routine’s function.

Wwith regards to generation of the wrappers, the original FORTRAN
routines are the "seeds" for the wrappers. A simple perl script casts
the FORTRAN comments to C style then creates a skeleton for the new
subroutine containing the comments.

CSPICE and f2c¢ use typedefs to emulate FORTRAN data types. CSPICE
deliberately uses typedefs which differ from the f2c typedefs. The
basic f2c¢ typedefs:

typedef long int integer;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef long int logical;
typedef long int ftnlen;

f2c treats all characters and strings as char *. The most commonly used
CSPICE typedefs:

typedef char SpiceChar;
typedef double SpiceDouble;
typedef float SpiceFloat;
typedef long Spicelnt;
typedef const char ConstSpiceChar;

typedef const double ConstSpiceDouble;
typedef const float ConstSpiceFloat;

typedef const long ConstSpicelnt;
enum _Spiceboolean { SPICEFALSE = 0, SPICETRUE = 1 };
typedef enum _Spiceboolean SpiceBoolean;

typedef const enum _Spiceboolean ConstSpiceBoolean;

The const types are not required by a need of function, but their
use insures input values are not unintentionally modified within a
routine. All functions with input-only vectors and matrices have those
arguments declared constant.

A problem exists with the function declarations in stdlib.h on the
Sun platform. The f2c header file, f2c.h, defines several macros which
conflict with those found in stdlib.h. As some CSPICE functions require
both f2c.h and stdlib.h our solution is to copy the needed typedefs to
CSPICE instead of including f2c.h in a CSPICE header file.

The translated routines’ argument list and f2c¢ internal string
formats caused most of the problems during the first stage of CSPICE
development. As mentioned, f2c¢ converted code use FORTRAN strings,
consequently a string passed from a standard C routine to a translated
routine must be converted to a FORTRAN gtring; a string passed from a

translated routine to a standard C routine must be converted to a C
string. Translated routines do not detect possible error modes such as
zero length strings or null character pointers, so several subroutines
and a set of macros handle these string operations. As in other
FORTRAN-C interfaces, the routines require string length arguments.

Performance

The C code created by f2c may well emulate the behavior of the
source FORTRAN code, but that code tends to run slow without compiler
optimization.

CSPICE uses optimization on all target platforms when possible. A
small difficulty expressed itself during the first attempts to compile
CSPICE under CodeWarrior Pro 3. If the compiler optimization settings
are:

Instruction Scheduling for 604,
Optimize for SPEED,

Global Optimization Level 4,
Peephole Optimization

several routines fail to compile due to memory constraints on the
CodeWarrior IDE. Trial and error proved the culprit to be Global
Optimization Level 4, so the offensive routines now compile at Global
Optimization Level 1. Another routine resists optimization on the MS-PC
platform; this routine compiles unoptimized.

C++ issues

CSPICE is the basis for a prototype object oriented version of the
SPICE library in C++ (SPICE++, still under design). Several problems
were found with calls to CSPICE from C++ code.

All input arrays and matrices to wrappers are of type
ConstSpiceDouble (const double). Some pesky compilers flag a "non-const
passed to a const® warning when passing non-const arguments. Nat
Bachman created a set of interface macros which perform type casting for
the appropriate routines. The macros prevent the warning without
forcing the user to explicitly declare their vectors or arrays as const.

Another issue is name mangling. A C++ compiler does not create the
same symbol name for a routine as does a C compiler - a consequence of
C++ function overload property. To link a C library to a C++ program
requires that the C routine be defined as an external routine. Nat
Bachman added a compile time flag to identify the CSPICE prototypes as
external functions when linking the CSPICE library against a C++
routine.

Applications of the CSPICE Library.

Example 1 shows a simple program (the states cookbook program) with
a complete header, which retrieves SPICE kernel data to calculate a
body’s state with respect to some observer in a user defined reference
frame. The program demonstrates how to load SPK, PCK, and leapseconds
kernel files, convert a time/date string to the epoch time (a time
measured against a known reference date), then retrieve a state in a
particular reference frame at the epoch time. .

Other CSPICE uses:

IDL - CSPICE and a collection of interface routines allows
IDL to access SPICE kernel data.

SSC - Solar System Calculator, a simple scripting interface
to CSPICE. Originally designed by Mike Spencer,
updated to use CSPICE by Ed Wright.

SOAP - a sophisticated orbit analysis tool by The Aerospace
Corporation for the MacPPC, Windows NT and Solaris.
SOAP details are available at:

http://www.aero.org/software/soap/index.html.

The use of CSPICE gives SOAP users the ability to
visualize trajectory data and viewing geometry
from data in SPICE kernels.

Future Work

CSPICE work continues for the foreseeable future. Current goals:
- expand the number of wrappers

- improve platform compatibility

- C specific documentation

- bug squashing

Long range goals:
- An object-oriented library (SPICE++)
- decoupling the f2c¢ I/0 libraries from CSPICE
- use of dynamic memory allocation in low level CSPICE
routines
- complete documentation with tutorial code examples

CSPICE is not designed for multithreaded applications nor does NAIF
does not plan to add this capability. SPICELIB and CSPICE are stable
across all dates and calendars.

Alpha versions of the CSPICE toolkit are available via anonymous
ftp at naif.jpl.nasa.gov in /pub/naif/cspice.

http://www.aero.org/software/soap/index.html
http://naif.jpl.nasa.gov

NASA supports CSPICE development under contract #?. My thanks to
Nat Bachman who provided input and reviews of this article.

Example 1.

/*

-Procedure states(Compute state of one body relative to another)
-Abstract

This "cookbook" program demonstrates the use of NAIF S- and P-
Kernel (SPK) files and subroutines to calculate the state
(position and velocity) of one solar system body relative to
another solar system body.

The purpose of this program is twofold:

1) To show how NAIF ephemeris data may be made available to
a program.

2) To show how the apparent, true, or geometric state
(inertially referenced cartesian position and velocity)
of one solar system body relative to another solar
system body may be calculated.

The CSPICE subroutine spklef_c (S/P Kernel, Load Ephemeris
File) handles the first task by maintaining a database of

ephemeris files. The calling program indicates which files
to load by passing their names to spklef_c.

spkezr_c (S/P Kernel, Real easy reader) handles the second task
by accessing the data loaded with spklef_c (spkezr_c does not
require the name of an SPK file as input).

-Copyright

Copyright (1998), California Institute of Technology.
U.S. Government sponsorship acknowledged.

-Input
The program prompts the user for the following input:
- The name of a NAIF leapseconds kernel file.

- The name of a NAIF binary SPK ephemeris file.
- The name for the observing body.

The name for the target body.

A time string of interest.

An reference frame, i.e., "J2000".

The type of aberration correction desired.

-Output
- The state of the target body relative to the observing
- ?ﬁzyéne-way light-time from the target body to the
observing body.
-Particulars

The user supplies a NAIF leapseconds kernel file, a NAIF binary
SPK ephemeris file, valid names for both the target and
observing bodies, and the time to calculate the body’s state.

Note that the ‘target body’ and the ‘observing body’ are both
NAIF ephemeris objects described via their common names, and
may be any of the following, provided ephemeris data are
available for them in the SPK file:

- a spacecraft

- a planet or satellite mass center
- a planet barycenter

- the sun

the solar system barycenter

- a comet

an asteroid

By definition, the ephemerides in SPK files are continuous. The
user can obtain states for any epoch within the interval of
coverage. Epochs are always specified in ephemeris seconds past
Julian year 2000 when accessing SPK files.

The ephemeris data in a single SPK file may be referenced to a
number of different (inertial or non-inertial) frames. The user
can specify that states be returned in any of the recognized
frames listed in the NAIF IDs Required Reading, including J2000
and B1950.

spkezr_c returns apparent, true, or geometrlc states dependlng
on the value of the aberration flag when it is called.

Flag Type of correction State computed by spkezr_c

—— o —— - G AR S - - - R A S e e G e W S A M S e A A " A e —

"LT+S" light-time and stellar aberration Apparent
“LT*" light-time only True

*NONE" no correction

-References

For additional information,

Geometric

For the sake of brevity, this program performs no error checks
on its inputs. Mistakes will cause the program to crash.

see NAIF IDS Required Reading, and

the headers of the CSPICE subroutines spklef_c, spkez_c and

str2et_c.

-Restrictions

-Literature_References

-Author_and_Institution

None.

None.

E.D. Wright

-Version

*/

~CSPICE Version 1.0.0, 01-MAR-1998

/* Load needed headers.

#include <stdio.h>
#include "SpiceUsr.h"

/* lLocal declarations.

#define
#define
#define

SpiceDouble
SpiceDouble
SpiceDouble
SpiceDouble
SpiceDouble
SpiceDouble

*/

*/

UTCLEN 48
LENOUT 32
FILELEN 72
vec [3];
vecl [3];
vec2 [31;
vout (31;
state [6]:
1t

(EDW)

SpiceDouble et;

SpiceChar * leap;
SpiceChar * spk;
SpiceChar * corr;
SpiceChar * ref;
SpiceChar * utc;
SpiceChar * format;
SpiceChar * targ;
SpiceChar * obs; -
SpiceChar utcstr[UTCLEN];
Spicelnt prec; . ..
SpicelInt handlqg§ $_
void main()
{
/*
Set the time output format and the precision of that output.
*/
format = “C*;
prec = 0;
/*

Start out by prompting for the names of kernel files.
Load each kernel as the name is supplied.

Note: prompt_c will allocate the needed memory for the
returned strings.
*/

/* Get and load the leapsecond kernel. */
leap = prompt_c (“"Enter name of leapseconds kernel : ")
ldpool_c (leap);

/* Get and load the spk kernel. */
spk = prompt_c ("Enter name of SPK file : ")
spklef_c (spk, &handle);

/* Get the rest of the needed paramgters. */
targ = prompt_c ("Target (what am I looking at) : ")

ref
corr
oObs
utc

/* Convert the time

prompt_c
prompt_c
prompt_c
prompt_c

str2et_c (utc, &et);

/* Compute the state of targnfrom obs at et. */

spkezr_c (

/* Convert the eﬁhemeris time
et2utc_c (et ,

/*

Everything’s computed.

string to

"Reference frame (J2000, B1950,
*Aberration correction
"Observer (where am I)
“Event time

targ, et, ref, corr, obs,

Output the results.

kilometers and kilometers per second.

*/

etc.): ");
")
")

*);

ephemeris time J2000. */

to a calendar format. */
format, prec, UTCLEN, utcstr);

Units are

printf ("\n The state of %s wrt %s at UTC time %s\n*, targ,

printf
printf
printf
printf
printf
printf

}

SN S~ g~

ﬁtﬂir<;ix

$f KM \n"*,
$f KMS\n",
$f XM \n*,
$f KMS\n",
%f KM \n",
$f KMS\n*,

state[0]
state(3]
state[l]
state[4])
state[2]
state[5]

N e s i N
. = e W me W

obs,
utcstr);

